Quay lại Blog
Data EngineeringCập nhật: 25 tháng 2, 202518 phút đọc

Real-time Data Pipeline: Kafka, CDC, và Streaming Architecture

Real-time analytics không còn là nice-to-have mà đã trở thành requirement. Hướng dẫn chi tiết về Change Data Capture (CDC), Apache Kafka, Stream Processing, và cách build real-time data pipeline end-to-end.

Vũ Đức Trung

Vũ Đức Trung

Senior Data Engineer (Chuyên gia Streaming)

Real-time data streaming architecture with Kafka, CDC, and stream processing pipeline
#Real-time Data#Apache Kafka#CDC#Stream Processing#Debezium#Kafka Streams#Apache Flink#Event Streaming

"Tại sao dashboard của tôi update mỗi ngày 1 lần? Competitor có real-time data, còn chúng ta phải chờ đến sáng hôm sau."

Nếu bạn là Data Engineer và nghe câu này từ CEO, đã đến lúc nghĩ đến real-time data pipeline.

5-10 năm trước, real-time analytics là luxury - chỉ Netflix, Uber, Amazon có. Ngày nay, nó là requirement:

  • E-commerce: Real-time inventory để avoid overselling
  • Fintech: Real-time fraud detection (phát hiện giao dịch gian lận trong < 1 giây)
  • Logistics: Real-time tracking, route optimization
  • Gaming: Real-time leaderboards, player analytics

Theo Gartner, 87% enterprises sẽ implement real-time or near-real-time analytics by 2025. Nếu bạn vẫn dùng batch (daily ETL), bạn đang thua cuộc.

Nhưng real-time không dễ. Traditional batch ETL (chạy mỗi đêm) đơn giản, proven. Real-time thì:

  • Complex architecture (Kafka, CDC, Stream processing)
  • Higher cost (infrastructure always running)
  • More failure modes (latency spikes, backpressure, out-of-order events)

Trong bài này, bạn sẽ học:

  • Batch vs Streaming: trade-offs thật sự
  • Khi nào cần real-time (< 1 phút latency)
  • Change Data Capture (CDC): Debezium, database replication
  • Apache Kafka fundamentals: Topics, partitions, consumer groups
  • Stream processing: Kafka Streams, Flink, Spark Streaming
  • Architecture example: E-commerce real-time analytics
  • Cost comparison: batch vs streaming
  • Migration path: Start batch, add streaming incrementally

Sau bài này, bạn sẽ biết exactly khi nào nên (và không nên) go real-time, và cách implement nó.

Batch vs Streaming: The Fundamental Trade-off

Batch Processing (Traditional)

How it works:

┌──────────┐     Nightly     ┌──────────┐      Morning      ┌──────────┐
│ Database │────────────────>│   ETL    │─────────────────>│   Data   │
│ (OLTP)   │   (12AM-3AM)   │  Server  │   (Ready 6AM)    │Warehouse │
└──────────┘                 └──────────┘                   └──────────┘
                                   │
                             Process all
                             yesterday's data

Characteristics:

  • Latency: 6-24 hours
  • Simplicity: Proven, well-understood
  • Cost: Lower (run once per day)
  • Use case: Historical analysis, reporting

Example:

  • E-commerce: Sales report cho yesterday
  • Marketing: Campaign performance report
  • Finance: Daily P&L

Stream Processing (Real-time)

How it works:

┌──────────┐  Continuous   ┌──────────┐  Continuous  ┌──────────┐
│ Database │──────────────>│  Kafka   │────────────>│  Flink   │
│ (OLTP)   │   (CDC)       │ Streams  │  Processing  │  Jobs    │
└──────────┘               └──────────┘              └────┬─────┘
                                                          │
                                                    < 1 second
                                                          ↓
                                                  ┌────────────┐
                                                  │Real-time DB│
                                                  └────────────┘

Characteristics:

  • Latency: < 1 second to few minutes
  • Complexity: Harder to build, maintain
  • Cost: Higher (always running)
  • Use case: Operational analytics, fraud detection, personalization

Example:

  • E-commerce: Real-time inventory updates
  • Fraud: Detect suspicious transaction immediately
  • Gaming: Live leaderboards

Key Differences

DimensionBatchStreaming
LatencyHours to daysSeconds to minutes
Data VolumeLarge batchesContinuous small chunks
ProcessingScheduled jobsContinuous processing
ComplexityLowHigh
CostLowerHigher
Fault ToleranceRetry jobCheckpointing, exactly-once
ToolsAirflow, dbt, Spark BatchKafka, Flink, Spark Streaming

The Truth: You Need Both

Reality: Most companies need hybrid architecture:

  • Streaming: For operational use cases (< 1 hour latency needed)
  • Batch: For historical analysis, complex transformations

Example E-commerce:

  • Real-time (streaming): Inventory updates, fraud detection
  • Batch (nightly): Revenue reports, customer segmentation, ML model training

Don't replace batch with streaming. Augment batch with streaming where needed.

When You Actually Need Real-time

Not everything needs real-time. Implementing real-time cho use case không cần = wasted effort.

✅ Use Cases That Need Real-time (< 1 minute latency)

1. Fraud Detection

  • Requirement: Detect fraudulent transaction BEFORE completion
  • Latency: < 5 seconds
  • Example:
    • User từ Vietnam suddenly có transaction ở Nigeria
    • Amount unusually large
    • → Block transaction immediately

2. Real-time Pricing & Inventory

  • Requirement: Prevent overselling, dynamic pricing
  • Latency: < 30 seconds
  • Example:
    • E-commerce: Last 2 items in stock, show "Only 2 left!"
    • Airlines: Dynamic pricing based on demand
    • Uber: Surge pricing

3. Operational Dashboards

  • Requirement: Monitor systems, detect issues fast
  • Latency: < 1 minute
  • Example:
    • Server CPU spike → alert DevOps
    • Website traffic surge → scale infrastructure
    • Payment gateway down → notify team

4. Customer-facing Real-time Analytics

  • Requirement: User sees their own data immediately
  • Latency: < 10 seconds
  • Example:
    • Banking app: Transaction appears in history immediately
    • Fitness app: Workout stats update live
    • Delivery app: Order status updates

5. Personalization & Recommendations

  • Requirement: React to user behavior in session
  • Latency: < 5 seconds
  • Example:
    • User views product A → Recommend related products
    • User abandons cart → Trigger popup offer
    • Netflix: Update recommendations based on current watch

❌ Use Cases That DON'T Need Real-time

1. Historical Reporting

  • Weekly/monthly sales reports → Batch is fine
  • Marketing ROI analysis → Batch
  • Financial statements → Batch

2. ML Model Training

  • Models train on historical data → Batch
  • Feature engineering → Batch
  • Even "real-time" models retrain in batch

3. Complex Analytics

  • Customer lifetime value calculation → Batch
  • Cohort analysis → Batch
  • A/B test analysis → Batch

4. Data Quality Checks

  • Most checks can run daily → Batch
  • Exception: Critical operational data → Real-time

Rule of Thumb:

  • Question to ask: "What bad thing happens if this data is 1 hour old?"
  • If answer is "Nothing serious" → Batch
  • If answer is "We lose money / customers / safety" → Real-time

Change Data Capture (CDC): The Foundation

CDC là technology để capture changes (INSERT, UPDATE, DELETE) từ database và stream chúng real-time.

Why CDC?

Traditional approach (Batch):

-- Nightly ETL query
SELECT * FROM orders
WHERE updated_at >= CURRENT_DATE - INTERVAL '1 day';

Problems:

  • Misses deletes (deleted rows không có trong result)
  • Relies on updated_at column (nếu không có thì sao?)
  • Full table scan nếu table lớn
  • Batch latency (24 hours)

CDC approach:

Database Transaction Log
  ↓
CDC Tool (Debezium)
  ↓
Kafka Topic (orders_changes)
  ↓
Stream Processor
  ↓
Data Warehouse (near real-time)

Benefits:

  • Capture all changes: INSERT, UPDATE, DELETE
  • Low latency: < 1 second
  • Low impact: Reads transaction log, not query database
  • No schema changes: Không cần thêm updated_at column

CDC Technologies

1. Debezium (Most Popular - Open Source)

How it works:

  • Reads database transaction log (binlog for MySQL, WAL for PostgreSQL)
  • Publishes changes to Kafka topics
  • Supports: MySQL, PostgreSQL, MongoDB, Oracle, SQL Server

Setup Example (PostgreSQL):

# debezium-postgres-connector.json
{
  "name": "orders-connector",
  "config": {
    "connector.class": "io.debezium.connector.postgresql.PostgresConnector",
    "database.hostname": "postgres.example.com",
    "database.port": "5432",
    "database.user": "debezium_user",
    "database.password": "password",
    "database.dbname": "ecommerce",
    "database.server.name": "ecommerce_db",
    "table.include.list": "public.orders,public.order_items,public.customers",
    "plugin.name": "pgoutput",
    "publication.autocreate.mode": "filtered"
  }
}

Output (Kafka Message):

{
  "before": null,
  "after": {
    "order_id": 12345,
    "customer_id": 678,
    "total_amount": 150.00,
    "status": "completed",
    "created_at": "2025-01-11T10:30:00Z"
  },
  "source": {
    "version": "2.0.0",
    "connector": "postgresql",
    "name": "ecommerce_db",
    "ts_ms": 1641897000000,
    "snapshot": "false",
    "db": "ecommerce",
    "schema": "public",
    "table": "orders"
  },
  "op": "c",  // c=create, u=update, d=delete
  "ts_ms": 1641897001234
}

Pros:

  • Open-source, free
  • Wide database support
  • Proven at scale (used by Uber, Netflix)

Cons:

  • Requires Kafka infrastructure
  • Complex setup
  • Needs database permissions

2. AWS DMS (Database Migration Service)

Use case: AWS-native CDC

Features:

  • Supports 20+ source databases
  • Target: S3, Kinesis, Redshift, DynamoDB
  • Managed service (no infrastructure)

Pricing: $0.01-0.60 per hour depending on instance size

3. Google Datastream

Use case: GCP-native CDC

Features:

  • Supports: Oracle, MySQL, PostgreSQL, SQL Server
  • Target: BigQuery, Cloud Storage, Pub/Sub
  • Serverless, fully managed

4. Fivetran (Commercial)

Use case: Easiest CDC

Features:

  • Pre-built connectors for 300+ sources
  • CDC automatically configured
  • Managed, zero-ops

Pricing: $1-2 per million rows/month

Recommendation:

  • Open-source / budget: Debezium + Kafka
  • AWS: AWS DMS
  • GCP: Datastream
  • Zero-ops: Fivetran

Apache Kafka: The Streaming Backbone

Apache Kafka is distributed event streaming platform - heart của real-time architecture.

Kafka Core Concepts

1. Topics

  • Like a table/log where events are written
  • Example topics: orders, page_views, payment_transactions
  • Append-only (immutable)

2. Partitions

  • Topic split into partitions for parallelism
  • Each partition is ordered sequence of events
  • Example: orders topic with 10 partitions → 10 parallel consumers
Topic: orders
├── Partition 0: [order_1, order_5, order_9, ...]
├── Partition 1: [order_2, order_6, order_10, ...]
└── Partition 2: [order_3, order_7, order_11, ...]

3. Producers

  • Applications that write events to topics
  • Example: CDC tool (Debezium) writes database changes

4. Consumers

  • Applications that read events from topics
  • Example: Flink job reads orders, calculates revenue

5. Consumer Groups

  • Multiple consumers working together to process topic
  • Each partition consumed by 1 consumer in group
  • Enables parallelism
Consumer Group: revenue_calculator
├── Consumer 1 → Partition 0, 1
├── Consumer 2 → Partition 2, 3
└── Consumer 3 → Partition 4, 5

Kafka Architecture

┌─────────────────────────────────────────────┐
│           Kafka Cluster                     │
│                                             │
│  ┌────────────┐  ┌────────────┐  ┌────────┐│
│  │ Broker 1   │  │ Broker 2   │  │Broker 3││
│  │            │  │            │  │        ││
│  │ Topic A    │  │ Topic A    │  │Topic A ││
│  │ Partition 0│  │ Partition 1│  │Part. 2 ││
│  └────────────┘  └────────────┘  └────────┘│
└─────────────────────────────────────────────┘
        ▲                               │
        │                               │
   Producers                       Consumers
  (Write data)                   (Read data)

Kafka Use Cases

1. Event Streaming

  • User clicks → Kafka → Analytics
  • IoT sensor data → Kafka → Dashboards

2. Log Aggregation

  • Application logs → Kafka → Elasticsearch
  • Better than files: scalable, real-time

3. Messaging

  • Replace traditional message queues (RabbitMQ, SQS)
  • Higher throughput, better persistence

4. Stream Processing

  • Data pipeline backbone
  • Input to Flink/Spark Streaming

Managed Kafka Services

1. Confluent Cloud

  • Pros: Best Kafka experience, added features (Schema Registry, ksqlDB)
  • Cons: Expensive ($1-10K/month)
  • Use case: Production-grade, need support

2. AWS MSK (Managed Streaming for Kafka)

  • Pros: AWS-native, integrates với AWS services
  • Cons: Limited features vs Confluent
  • Pricing: $0.05-0.60/hour per broker

3. Self-hosted (Open Source)

  • Pros: Free, full control
  • Cons: Operations burden (monitoring, scaling, upgrades)
  • Use case: Large team, Kafka expertise

Recommendation:

  • < 1M events/day: Confluent Cloud (Basic tier, $1-2K/month)
  • AWS-heavy: MSK
  • > 10M events/day + expertise: Self-hosted

Stream Processing: Transform Data in Flight

Stream processing = transform, aggregate, join streaming data in real-time.

Stream Processing Engines

1. Kafka Streams (Easiest)

Pros:

  • Library, not separate cluster (runs in your app)
  • Java/Scala
  • Tight Kafka integration

Example:

// Count orders per customer in real-time
StreamsBuilder builder = new StreamsBuilder();

KStream<String, Order> orders = builder.stream("orders");

KTable<String, Long> orderCounts = orders
  .groupBy((key, order) -> order.getCustomerId())
  .count();

orderCounts.toStream().to("customer_order_counts");

When to use: Simple transformations, already using Kafka, Java/Scala team

2. Apache Flink (Most Powerful)

Pros:

  • True streaming (not micro-batches)
  • Complex event processing
  • Exactly-once guarantees
  • SQL support

Example:

-- Flink SQL: Revenue per product category, 5-minute windows
SELECT
  product_category,
  TUMBLE_END(order_time, INTERVAL '5' MINUTE) as window_end,
  SUM(total_amount) as revenue
FROM orders
GROUP BY
  product_category,
  TUMBLE(order_time, INTERVAL '5' MINUTE);

When to use: Complex analytics, need exactly-once, large scale

3. Spark Streaming (Micro-batches)

Pros:

  • Unified batch + streaming code
  • Scala/Python/Java
  • Large ecosystem

Cons:

  • Micro-batches (not true streaming)
  • Higher latency than Flink (seconds vs milliseconds)

When to use: Already using Spark for batch, need hybrid

Comparison:

FeatureKafka StreamsFlinkSpark Streaming
LatencyLow (ms)Lowest (ms)Medium (seconds)
ComplexityLowHighMedium
ScalabilityHighHighestHigh
LanguageJava/ScalaJava/Scala/PythonScala/Python/Java
DeploymentLibraryClusterCluster
SQL SupportNoYes (Flink SQL)Yes (Spark SQL)

Carptech Recommendation:

  • Starting out: Kafka Streams
  • Need power: Flink
  • Already Spark: Spark Streaming

Real-world Architecture: E-commerce Real-time Analytics

Let's build complete real-time analytics system cho e-commerce.

Requirements

Use Cases:

  1. Real-time inventory: Show "Only 3 left!" accurately
  2. Fraud detection: Block suspicious orders < 5 seconds
  3. Real-time dashboards: CEO sees revenue update every minute
  4. Personalization: Product recommendations based on current session

Architecture

┌─────────────┐  CDC      ┌─────────────┐
│  PostgreSQL │─Debezium─>│    Kafka    │
│  (Orders,   │           │   Topics    │
│  Inventory) │           │             │
└─────────────┘           └──────┬──────┘
                                 │
                    ┌────────────┼────────────┐
                    │            │            │
                    ▼            ▼            ▼
            ┌──────────┐  ┌──────────┐  ┌──────────┐
            │  Flink   │  │  Flink   │  │  Flink   │
            │ Inventory│  │  Fraud   │  │ Revenue  │
            │   Job    │  │   Job    │  │   Job    │
            └────┬─────┘  └────┬─────┘  └────┬─────┘
                 │             │             │
                 ▼             ▼             ▼
            ┌──────────┐  ┌──────────┐  ┌──────────┐
            │ Redis    │  │ Postgres │  │BigQuery  │
            │(Cache)   │  │(Alerts)  │  │(Analytics)│
            └────┬─────┘  └──────────┘  └────┬─────┘
                 │                            │
                 ▼                            ▼
            ┌──────────┐              ┌───────────┐
            │ Website  │              │Dashboards │
            │(Real-time│              │ (Looker)  │
            │inventory)│              └───────────┘
            └──────────┘

Implementation

Step 1: CDC Setup (Debezium)

# Deploy Debezium connector
curl -X POST http://debezium:8083/connectors \
  -H "Content-Type: application/json" \
  -d '{
    "name": "ecommerce-postgres-connector",
    "config": {
      "connector.class": "io.debezium.connector.postgresql.PostgresConnector",
      "database.hostname": "postgres",
      "database.port": "5432",
      "database.user": "debezium",
      "database.password": "password",
      "database.dbname": "ecommerce",
      "database.server.name": "ecommerce_db",
      "table.include.list": "public.orders,public.order_items,public.inventory",
      "plugin.name": "pgoutput"
    }
  }'

Kafka topics created automatically:

  • ecommerce_db.public.orders
  • ecommerce_db.public.order_items
  • ecommerce_db.public.inventory

Step 2: Real-time Inventory (Flink Job)

-- Flink SQL job
CREATE TABLE orders (
  order_id BIGINT,
  product_id BIGINT,
  quantity INT,
  order_time TIMESTAMP(3),
  WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 'ecommerce_db.public.orders',
  'properties.bootstrap.servers' = 'kafka:9092',
  'format' = 'debezium-json'
);

CREATE TABLE inventory_updates (
  product_id BIGINT,
  quantity_sold INT,
  last_update TIMESTAMP(3)
) WITH (
  'connector' = 'redis',
  'host' = 'redis',
  'port' = '6379'
);

-- Update inventory in real-time
INSERT INTO inventory_updates
SELECT
  product_id,
  SUM(quantity) as quantity_sold,
  MAX(order_time) as last_update
FROM orders
GROUP BY product_id;

Website reads from Redis:

# Python web app
import redis

r = redis.Redis(host='redis', port=6379)

def get_available_inventory(product_id):
    # Initial inventory from database
    initial_inventory = db.query(
        f"SELECT quantity FROM inventory WHERE product_id = {product_id}"
    )

    # Real-time sold quantity from Redis
    quantity_sold = r.get(f"product:{product_id}:quantity_sold") or 0

    # Available = Initial - Sold
    available = initial_inventory - int(quantity_sold)

    return max(0, available)  # Don't show negative

Step 3: Fraud Detection (Flink Job)

-- Detect suspicious orders
CREATE TABLE orders_enriched (
  order_id BIGINT,
  customer_id BIGINT,
  total_amount DECIMAL(10,2),
  customer_country STRING,
  ip_country STRING,
  order_time TIMESTAMP(3)
) WITH (...);

CREATE TABLE fraud_alerts (
  order_id BIGINT,
  reason STRING,
  risk_score DOUBLE,
  detected_at TIMESTAMP(3)
) WITH (
  'connector' = 'jdbc',
  'url' = 'jdbc:postgresql://postgres:5432/ecommerce',
  'table-name' = 'fraud_alerts'
);

-- Flag suspicious orders
INSERT INTO fraud_alerts
SELECT
  order_id,
  'country_mismatch' as reason,
  1.0 as risk_score,
  order_time as detected_at
FROM orders_enriched
WHERE customer_country != ip_country
  AND total_amount > 500;  -- High-value order from different country

Step 4: Real-time Revenue Dashboard (Flink → BigQuery)

-- Calculate revenue metrics in real-time
CREATE TABLE revenue_metrics (
  metric_time TIMESTAMP(3),
  revenue_1min DECIMAL(12,2),
  revenue_5min DECIMAL(12,2),
  revenue_1hour DECIMAL(12,2),
  order_count_1min BIGINT
) WITH (
  'connector' = 'bigquery',
  'project' = 'my-gcp-project',
  'dataset' = 'analytics',
  'table' = 'real_time_revenue'
);

INSERT INTO revenue_metrics
SELECT
  TUMBLE_END(order_time, INTERVAL '1' MINUTE) as metric_time,
  SUM(total_amount) as revenue_1min,
  SUM(total_amount) OVER (ORDER BY TUMBLE_END(order_time, INTERVAL '1' MINUTE)
    ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) as revenue_5min,
  SUM(total_amount) OVER (ORDER BY TUMBLE_END(order_time, INTERVAL '1' MINUTE)
    ROWS BETWEEN 59 PRECEDING AND CURRENT ROW) as revenue_1hour,
  COUNT(*) as order_count_1min
FROM orders
GROUP BY TUMBLE(order_time, INTERVAL '1' MINUTE);

Looker Dashboard:

-- Query BigQuery for dashboard
SELECT
  metric_time,
  revenue_1min,
  revenue_1hour
FROM analytics.real_time_revenue
WHERE metric_time >= TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 1 HOUR)
ORDER BY metric_time DESC;

Results

Metrics:

  • Latency: CDC to dashboard < 30 seconds
  • Accuracy: Inventory updates within 5 seconds
  • Fraud detection: Alerts within 10 seconds of order
  • Throughput: 10,000 orders/second

Business Impact:

  • ✅ Reduced overselling by 95%
  • ✅ Blocked $50K fraud per month
  • ✅ CEO sees revenue real-time (vs. next day before)
  • ✅ Personalization improved conversion by 12%

Cost Comparison: Batch vs Streaming

Scenario: E-commerce company, 1M orders/day

Batch Processing Costs

Infrastructure:

  • Airflow server: $200/month (1 medium instance)
  • Data warehouse (BigQuery): $500/month (batch queries)
  • Total: $700/month

Latency: 12-24 hours

Streaming Processing Costs

Infrastructure:

  • Kafka cluster (Confluent Cloud): $2,000/month (3 brokers, basic tier)
  • Flink cluster (self-hosted): $1,500/month (3 task managers)
  • Real-time database (Redis): $300/month
  • Data warehouse (BigQuery streaming): $1,200/month
  • Total: $5,000/month

Latency: < 1 minute

Cost Analysis

Streaming is 7x more expensive ($5K vs $700)

But:

  • If real-time prevents $10K fraud/month → ROI positive
  • If real-time increases conversion 5% → Revenue +$50K/month → ROI very positive
  • If real-time enables new products → Priceless

Key Question: "Is the business value of < 1 minute latency worth $4,300/month extra cost?"

For most companies:

  • Start with batch ($700/month)
  • Add streaming only for critical use cases (fraud, inventory)
  • Hybrid: Batch for analytics, streaming for operations

Migration Path: From Batch to Streaming

Don't do big bang migration. Add streaming incrementally.

Phase 1: Assessment (Month 1)

Questions to answer:

  • Which use cases need < 1 hour latency?
  • Current batch jobs: Which can't wait til tomorrow?
  • Infrastructure: Do we have Kafka expertise?
  • Budget: Can we afford 5-10x higher cost?

Output: Prioritized list of streaming use cases

Phase 2: Proof of Concept (Month 2-3)

Pick 1 simple use case:

  • Real-time inventory or
  • Fraud detection or
  • Operational dashboard

Setup:

  • Deploy Kafka (Confluent Cloud trial / MSK)
  • Implement CDC với Debezium
  • Build simple Flink/Kafka Streams job
  • Compare với batch: latency, accuracy

Success criteria:

  • Latency < 1 minute achieved
  • Data accuracy 99%+
  • Team comfortable with tools

Phase 3: Production Rollout (Month 4-6)

Production-ize POC:

  • Monitoring: Kafka lag, Flink backpressure
  • Alerting: PagerDuty integration
  • Disaster recovery: Kafka backups, Flink checkpoints
  • Documentation: Runbooks

Add 2-3 more use cases:

  • Iterate on learnings from POC

Phase 4: Scale (Month 7-12)

Expand streaming:

  • More data sources
  • More consumers
  • More complex stream processing

Optimize:

  • Right-size Kafka cluster
  • Tune Flink job parallelism
  • Cost optimization

Maintain batch:

  • Keep batch for historical analysis, ML training
  • Streaming augments, doesn't replace

Kết Luận

Real-time data pipelines are powerful, nhưng không phải silver bullet.

Key Takeaways:

  1. Real-time is requirement, not luxury

    • E-commerce, fintech, logistics cần real-time
    • Nhưng not everything needs real-time
  2. Hybrid architecture is reality

    • Streaming: Operational use cases (< 1 minute)
    • Batch: Historical analysis, reporting
  3. CDC is foundation

    • Debezium + Kafka = standard approach
    • Low-latency, low-impact database replication
  4. Kafka is backbone

    • Distributed, scalable event streaming
    • Confluent Cloud for managed, MSK for AWS, self-hosted for expertise
  5. Stream processing transforms data

    • Flink for power
    • Kafka Streams for simplicity
    • Spark Streaming for hybrid
  6. Cost is 5-10x higher than batch

    • Must justify with business value
    • Fraud prevention, revenue increase, new products
  7. Migrate incrementally

    • POC → Production → Scale
    • Don't replace batch, augment it

What Should You Do Next?

If you're:

  • 100% batch today: Assess if any use cases need real-time
  • Considering streaming: Start with POC (Kafka + Debezium + simple job)
  • Have streaming: Optimize costs, expand use cases

Action Plan:

  1. List top 10 data use cases
  2. For each, ask: "Cost of 1-hour latency?"
  3. If cost > $5K/month → streaming candidate
  4. POC with highest-value use case
  5. Measure: latency, cost, business impact
  6. Scale if ROI positive

Cần Help với Real-time Data Pipeline?

Carptech đã implement real-time data pipelines cho e-commerce, fintech, logistics companies tại Việt Nam và Southeast Asia.

Chúng tôi có thể giúp:

  • ✅ Assess use cases: which need real-time?
  • ✅ Design streaming architecture (Kafka + CDC + Flink)
  • ✅ Implement POC trong 4-6 tuần
  • ✅ Production rollout với monitoring, alerting
  • ✅ Train team về Kafka, stream processing

Typical Results:

  • < 1 minute latency (from 24 hours)
  • Fraud detection saves $10K-100K/month
  • Real-time inventory reduces overselling 90%

Đặt lịch real-time architecture assessment miễn phí →

Hoặc tìm hiểu thêm về Data Engineering:


Bài viết được viết bởi Carptech Team - chuyên gia về Real-time Data Engineering và Stream Processing. Nếu có câu hỏi về Kafka, CDC, Flink, hoặc streaming architecture, hãy liên hệ với chúng tôi.

Có câu hỏi về Data Platform?

Đội ngũ chuyên gia của Carptech sẵn sàng tư vấn miễn phí về giải pháp phù hợp nhất cho doanh nghiệp của bạn. Đặt lịch tư vấn 60 phút qua Microsoft Teams hoặc gửi form liên hệ.

✓ Miễn phí 100% • ✓ Microsoft Teams • ✓ Không cam kết dài hạn